Q.P. Co	de:	16ME8802	F
Reg. N	lo:		
5		DHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Tech I Year I Semester (R16) Regular Examinations January 2017	२
		ADVANCED HEAT AND MASS TRANSFER (Thermal Engineering) (For Students admitted in 2016 only)	
Time: 3 I	hou		rŀ
Q.1		Derive general 3D conduction equation for steady state? OR	
Q.2	a.	How does the science of heat transfer differ from the science of thermodynamics?	:
	b.	Two rods of same diameter, one made of $brass(k = 85 \text{ W/mK.})$ and the other made of copper (k = 375 W/mK.) have one of their ends inserted into the furnace. Both rods are exposed to the same atmosphere. At a distance of 105mm away from the furnace end the temperature of the brass rod is 120°C. At what distance from the furnace end, the same temperature would be attained by the copper rod?	
		UNIT-II	

Q.3

Q.4

Q.6

а.

b.

- What is critical Reynolds number for flow over flat plate Calculate the average heat transfer coefficient and heat transfer at a distance of 10 cm from the leading edge of an entirely heated plate placed in an air stream. The air velocity is 10 m/sec, Its temperature T=30^oC the surface temperature of plate is 70^oC. The plate is 1m wide. OR
- Define Grashoff number and Nusselt number 4M а. The maximum allowable surface temperature of an electrically b. heated vertical plate 15 cm height and 10 cm wide is 140°C. Estimate the maximum rate of Heat dissipation from both sides of the plate in an atmosphere at 20°C. The radiation heat transfer coefficient is 8.72 W/m2K.For air at 80^oC take v = 21.09x10⁻⁶ m²/sec, Pr=0.692 and k=0.03W/mK. 8M

UNIT-III

- Q.5 Explain the Nusselts theory of film condensation on a vertical plate 12M
 - OR
 - How heat exchangers are classified? 4M a. b. A and B exchange heat in a counter flow heat exchanger. Fluid A enters at 420 °C and has a mass flow rate of 1kg/s. Fluid B enters at 20 °C and has a mass flow rate of 1kg/s. The effectiveness of heat exchange is 75%.determine (i) the rate of heat flow,(ii) the exit temperature of fluid B. Specific heat of fluid A is 1kj/kgK and that of fluid B is 4kJ/kgK. 8M

12M

Max. Marks: 60

4M

8M

4M

8M

Q.7 Explain the Stefan-Boltzmann law, Planck's law and Wien's displacement law 12M

OR

Q.8 Explain the Kirchhoff's law of radiation. a.

Two parallel rectangular surfaces 1m x 2m are opposite to each b. other at a distance of 4m. the surfaces are black and at 100°C and 200[°]c respectively. Calculate the heat exchange by radiation between the two surfaces.

UNIT-V

Q.9 What do you understand by diffusion coefficient? Give its units. 4M a. b. Calculate the mass transfer coefficient of water vapour in air in turbulent flow at 60 m/s at 1 atm. 300 K, over a flat plate 0.3 m long. Assume concentration of vapour in air is sufficiently dilute so that. $P_{\rm B}/p=1$.

8M

12M

OR

Q.10 Gaseous nitrogen is stored at elevated pressure in a rectangular steel container of 10 mm wall thickness. The molar concentration of nitrogen in steel at the outer surface is 2kgmol/m³, while the concentration of nitrogen in steel at the outer surface is 0.5kgmol/m³. The binary diffusion coefficient for nitrogen in steel is 0.26x 10⁻¹² m^{2} /s. what is the mass flux of nitrogen through the steel?

*** END ***

6M

6M